WebOct 16, 2024 · A gold star may be possible, with a fission-fusion reaction. The other answers are correct, gold is heavier than iron, so fusing those atoms will consume more … Weba) The outer layers of the star are no longer gravitationally attracted to the core. b) Hydrogen fusion in a shell outside the core generates enough thermal pressure to push the upper layers outward. c) Helium fusion in the core generates enough thermal pressure to push the upper layers outward.
Stars Science Mission Directorate - NASA
WebJan 17, 2024 · The star could be high or low in mass, which determines the longevity and fate of every star. High-mass stars exist for a lesser amount of time and their eventual fate could be an explosive end in a supernova and a subsequent black hole. WebFor the lightest stars, convection (think rapidly boiling water) churns the entire star, so all of their hydrogen will eventually fuse. This will take much longer than the age of the universe, but even in the distant future, they will never compress enough … high river canada hotels
nucleosynthesis - Is a star powered by fission possible?
WebMar 8, 2024 · The most common elements, like carbon and nitrogen, are created in the cores of most stars, fused from lighter elements like hydrogen and helium. The heaviest elements, like iron, however, are only formed in the massive stars which end their lives in supernova explosions. WebNov 3, 2000 · Stars More Massive Than the Sun When the core runs out of hydrogen, these stars fuse helium into carbon just like the sun. However, after the helium is gone, their mass is enough to fuse carbon into heavier elements such as oxygen, neon, silicon, magnesium, sulfur and iron. Once the core has turned to iron, it can burn no longer. WebInterior Structure of a Massive Star Just before It Exhausts Its Nuclear Fuel: High-mass stars can fuse elements heavier than carbon. As a massive star nears the end of its evolution, its interior resembles an onion. how many canadian snowbirds go to florida